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Determination of the D1/2-Norm of the SOR Iterative 
Matrix for the Unsymmetric Case 

By D. J. Evans and C. Li 

Abstract. This paper is concerned with the determination of the Jordan canonical form 
and Dl/2-norm of the SOR iterative matrix derived from the coefficient matrix A having 
the form 

A ( D1 -H 
HT D2 

with D1 and D2 symmetric and positive definite. The theoretical results show that 
the Jordan form is not diagonal, but has only q principal vectors of grade 2 and that 
the D1/2-norm of YWb (Wb, the optimum parameter) is less than unity if and only if 
A = p(B), the spectral radius of the associated Jacobi iterative matrix, is less than unity. 
Here q is the multiplicity of the eigenvalue i,f of B. 

1. Introduction. For the iterative solution of the linear system of equations, 

(1.1) Ax = b, 

the Jacobi and Gauss-Seidel methods are well known. They are very simple from 
a computational point of view since only matrix-vector multiplications and linear 
combinations of vectors are needed. This is also valid for the modification called 
"Successive Overrelaxation" or "SOR" method, where a relaxation factor is intro- 
duced for accelerating the convergence. Let 

(1.2) A = D-AL-AU, 

where D is the block diagonal part of A, -AL and -Au are the remaining strictly 
lower and upper triangular parts of A; then, if D is nonsingular, the SOR method 
is given by 

(1.3) Xk+1 = YWXk + w(I - wL)-D-b, k > 0. 

Here, xo is an initial vector, Y, the iterative matrix given by 

(1.4) = (I - wL)1 [(1 - w)I + wU], 

and 

(1.5) L =D-'AL, U = D-'Au. 

Now (1.3) converges if and only if the spectral radius of Y, is less than unity, and 
the asymptotic rate of convergence is given by 

(1.6) Roo (Yw) = -log(p(Yw)). 
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The SOR method has been extensively studied for a symmetric positive definite 
matrix A (see, e.g., Varga [5] and Young [7]). For a positive definite and consistently 
ordered matrix A, from [5] and [7] we have: 

Si. p(YF,) <1 , fi < 1 and 0 <w <2. 
S2. 

( {wt + [w2P2 -4(w-)1/2]1/2}2/4 if 0 < w < wl 

lw-i ~~~~~~~~~if w, < w < 2. 

S3. p(-Fwb) < p(-F) if w 54wb. 
Here, 

f = p(B) = p(L + U), W/ = 2/[1 + (1 - 2)1/2] 

Young [6] has shown that if A is consistently ordered and the eigenvalues of B 
are real and less than unity in modulus, then the Jordan canonical form of SF, 
is not diagonal. Therefore, in this case, the SOR method converges slower than 
expected based on the spectral radius p(Sb). When A is symmetric and positive 
definite, and when A has the form 

(1.7) A =(D, -H) 

Young [7, Chapter 7] determined the D1/2-norm and A1/2-norm of SF, (the spectral 

norms of D1/2 - - D1/2 and Al/2 ', A /2, respectively) and pointed out that the 
b b 

D1/2-norm of X, is greater than unity in general. Moreover, 11-7 II (the spectral 

norm of YT) behaves much like IISwJLIID1/2. However, for large m, IISjmIID1/2 < i, 
b and eventually IIS7 IID1/2 tends to zero, though considerably more slowly than 

p(Y7). 
For the matrix A in (1.1) the unsymmetric case is by far not as common as 

the symmetric one, but nevertheless, unsymmetric matrices appear, e.g., in the 
numerical solution of the biharmonic equation [1] and the computation of cubic 
splines, [3] and [4, Chapter 3]. If the matrix A (1.2) is consistently ordered and B, 
given by 

(1.8) B=L+U, 

is similar to a skew-symmetric matrix and has either zero eigenvalues or purely 
imaginary eigenvalues, then from [1], [3], and [4], or the theory of Young [7], we 
have: 

US1. p(-FW) < 1 c* O < w< 2/(1 +,) 
US2. 

1-w if 0 < w < Wb, 

P(Y { [fiw+ 212+4(w if wb<w< 
2 

US3. P(5wb) < P(YL) if w 54 Wb. 

Here, 

(1.9) ft=p(B), wb = 2/(1 + 1+ft2). 

Notice that in this case we can always choose the relaxation factor w such that 
p(SF,) < 1, no matter how large fi is. This is very different from the symmetric 
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case. Another difference between the two cases is that the optimum factor Wb for the 
unsymmetric case is less than unity and the optimum factor w' for the symmetric 
case is greater than unity. It is also important to note that overestimating w' 
is better than an underestimation, but for Wb an underestimate is better than 
overestimating. 

However, to our knowledge, the Jordan canonical form and D1/2-norm of Y, 
for the unsymmetric case are not discussed in the literature. 

In this paper we will investigate these problems under the assumption that in 
(1.1) the matrix A has the special form (1.7) with D1 and D2 symmetric and 
positive definite and KT = -H. We will obtain some results similar to those for 
the symmetric case. 

In the next section we review some properties for skew-symmetric matrices re- 
quired for their application in the later sections. In Section 3 we construct the 
basis of eigenvectors of the associated Jacobi matrix B which is similar to a skew- 
symmetric matrix. In Section 4 we will show that the Jordan canonical form of 

FWb is not a diagonal matrix, but has only q principal vectors of grade 2 associated 
with Wb -1, the eigenvalues of 2Wb. Here, q is the multiplicity of the eigenvalue 
if (= ip(B)) of B. Hence, II-FM 11, the spectral norm, behaves like m p(Sb)ml 

rather than P(Ywb )m 

In Section 5 we will determine the D1/2-norm of Y, and point out that if fi = 
p(B) > 1, then IIYjbIID1/2 > 1. However, in Section 6, we will show that for any 
,i> 0, for m large enough, II-FwM ID1/2 < 1. Eventually, II2^jbIID1/2 converges to 
zero, though considerably more slowly than p(-Fj). 

In this paper, almost all the notations used are the same as those adopted by 
Young [7], and all our work is based on the theory of Young [7]. 

2. Some Properties of Skew-Symmetric Matrices. Let A E RfXf and 

(2.1) AT = -A. 

It is well known that A has the following properties: 
(a) All diagonal elements of A are zero. 
(b) A has either zero eigenvalues or purely imaginary eigenvalues, that is, any 

eigenvalue ,u of A has the form 

(2.2) ,u = i(. 

Here ( is real. Also, -,u = -ie is an eigenvalue of A. 
(c) A is a normal matrix, that is, 

(2.3) ATA=AAT. 

(d) A is unitarily similar to a diagonal matrix. 
All the above properties are easy to prove and can be found in any textbook of 
linear algebra, e.g., see [2]. 

3. The Eigenvectors of the Associated Jacobi Iteration Matrix B. Con- 
sider A in (1.1) to have the special form 

(3.1) A=(Di -H) 
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where D1 (e RrXr) and D2 (e RSXI) are symmetric positive definite and 

(3.2) HT = _K; 

the associated Jacobi iterative matrix B has the form 

(3.3) B=(G F) 

Here, 

(3.4) G=DD-1K, F=DT 'H. 

Because D1 and D2 are positive definite, we can choose symmetric and positive 
definite matrices D1/2 and D1/2 such that 

(3.5) D-/2D1/2 = D1, D1/2D/2 = D2 

If we write 

(3.6) (D D0) 

then we have 
0 D_~~ 1 2 HD-/2) 

(3.7) D"/2BD-"/2 - ( 1/2 ?D1/2 D1 2HD/ 

Hence B is similar to a skew-symmetric matrix, and thus unitarily similar to a 
diagonal matrix. 

In this section we will construct a basis of eigenvectors for B. From (3.3) we 
have 

(3.8) B2 (0 GF) 

Evidently, B2 is also similar to a diagonal matrix and, in fact, the (r x r) matrix FG 
and the (s x s) matrix GF are also similar to diagonal matrices, where r+ s = n, the 
order of the matrix A. Also note that FG and GF have nonpositive eigenvalues. 
Let the p eigenvectors of FG associated with the nonzero eigenvalues vl, aJ2,.. v, 

be 6i 2 .. p i.e., 

(3.9) FGfj = v3ji, j = 1,2, ...,Ip. 

If we let 

(3.10) qj = Gfj, j = 1,2,...,p, 

then r7j $ 0, and 7j is an eigenvector of GF associated with uj, i.e., 

(3.11) GFj = v r1j, j= 1,2,...,p. 

Moreover, since the (j, j = 1, 2, ... , p, are linearly independent, then so are the ij, 
j=1, 2, ...,p, since 

p 

Zcj?,j = 0 
j=1 

implies that 
v p 
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and hence the cj, j = 1,2,..., p, vanish because of the linear independence of 
the (jj, j = 1, 2, .. ., p. Evidently, there can be no more than p eigenvectors of GF 
associated with nonzero eigenvalues; otherwise, there would be more than p linearly 
independent eigenvectors of FG associated with the nonzero eigenvalues. Thus, we 
have 

(3.12) p < min{r, s}. 

Since <0, j=1, 2, ...,p, if we let 

(3.13) ju1=ij3 2'/2 Xj=-pj j yj=77j v= (x)X 2, .Pi 

where i2 = _1, then using (3.9), (3.11) and (3.13), we have 

(3.14) Bvj = (riy) - (v3 i) - (lsll) =j =1 2,.. . p. 

Notice that ,tj, j = 1, 2,... , p, have positive imaginary parts. 
Let us now define for j = p + 1, p + 2,..., 2p 

(3.15) Xi = Xi-PI Yi = -yi_P, vj 
Xi 

I 
P, 

i = -,aj_p 
Evidently, we have 

(3.16) Bvy = ,UVj, j = p + 1, p+ 2, .. ., 2p. 

If we let FGx = 0, where x $ 0, then by (3.4) we have 

DT'HD-'Kx=0, or HD2'Kx= 0. 

Thus, we have 

(3.17) -HD-112D- /2HTX = 0 or (D1 1/2HTX)*(D-1/2HTX) 0. 2 2 222 

Here * stands for the conjugate transpose of a matrix. Hence from (3.17) we have 
D"2 /2HTx = 0, or D2 lHTx = Gx = 0. Therefore, we have that if FGx = 0, 
where x $ 0, then 

(3.18) B() ( ) 0. 

Thus, if the eigenvectors of FG associated with the eigenvalue zero are X2p+l, 
X2p+2, . Xp+r then the vectors 

(3.19) vi = ( ) j = 2p+ 1,2p+21 ...p+r, 

are eigenvectors of B associated with the eigenvalue zero. Similarly, if the eigenvec- 
tors of GF associated with the eigenvalue zero are Yp+r+ 1 Yp+r+2 i ... * Ys+r, then 
the vectors 

(3.20) v 0) j=p+r+l, p+r+2,...,n=r+s, 

are eigenvectors of B associated with the eigenvalue zero. 
We have thus constructed a basis of eigenvectors for B, 
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and moreover, we have by (3.14) and (3.16) 

(3.22) Gxj = ujyj, Fyj = ,jXj, j =1,2, ... ,n. 

We also have 

for pj = ilvj1112, vj = j p; 

for 1lj =- j X1 /2, Vj = Z-P ), j = P+ 1J 2p; 

for pj = O, vj = (o ) j = 2p+ 1, .. p r + p; 

forpj = 0, vj = j ), jp +r+l,..n. 

4. The Principal Vectors of SZ. We now seek the eigenvectors and principal 
vectors of Y, for w 54 0. Because A has the form of (3.1), from (3.3) we have 

(4.1) L= [G ] U= [O O] 

Thus we have 

= (I-wL)-1((1 -w)I+wU) 

= [-IQ 0 ;] [(1-W)I1 wF( ] 
L-WG I2J 0 (1 -W)I2. 

(4.2) I ,1 0 (1 -w)Ii wF ] 

L WG I2 J 0 (1 -W)I2 - 
_ (1 -W)I1 wF 1 

W(l - W)G W2GF + (1 - w)I2]J 

where I, and I2 are identity matrices of the same sizes as D1 and D2, respectively. 
For each nonzero eigenvalue ,u of B, let A1/2 and A1/2 be the roots of 

(4-3) ~~~A + W -1 =I wpA 

Since 

B() (x) 

the vectors 

(4 4) u) = (A1/2Y) A1 /2Y 

are the eigenvectors of Y., since by (4.2), (3.22) and (4.3) we have 

z~ ~ ~ ~~( 
- w + (1-W +W 1+2)X 

(4.5) YWAj+2Y) = ([wi(1 - W+ wAA+ ) + (1 -w)A+ ]Y 
- A+w 

and 

(4.6) Zz = A-z. 
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If we let 

(4-7) v= ( ), v=(_ 

then we have 

(4.8) w = 2 (v + i) + A2( /2 (V-) = 2(1 + A1/2)V + '(1 - A1/2), 

z*= 1(v + 0) + A1/2(V -) = 2(1 + AL12)V + 1(1 - )V. 

If AL'2 5 A1+2 then w and z are linearly independent. But for wp 5 0, the 
discriminant w2 A 2- 4(w - 1) of (4.3) does not vanish unless 

(4.9) w 2 I'12 + 4(w - 1) = 0. 

On the other hand, if (4.9) holds and if w,u : 0, then A1/2 = A 1/2 = A1/2 - wM12 5 
0, and w and z are not linearly independent. Notice that in this case, 

(4.10) A+ = A= A= w2A2/4= w - 1. 

If we let 

(4.11) Z= 1 
2* Al!2 ~y} 

then we have 
, ^ _ t(1-W)I1 wF ) 1 0j 

Ywz w(l - w)G w2GF + (1- w)I2 2A1/2 

1 / ~~wFy 1 w,ux 
= 2A1/2 (W2GFy + (1-w)y) 2A1/2 (WI2y + (1- W)y 

_ 1 w,ux 

2A1/2 [W2p2 + 1-w-A + A]y) 

(4.12) = 2A1/2 ([W2p2 + 11-w)]y 1/Y 
= 2A1/2 ([4w - 2~A1/2x ) /2~y 

2A1/2 ([4(w-1) + 2(1 - w)]y 2A1/2 +2(w-lA)y 

(A12y) + Az = w + AZ. 

Hence, z is a principal vector of grade 2. Moreover, we have 
(4.13) w = (1+A1/2)V +(1 A1/2), -1 . 1 1 1 1 ' 

(4.13) w= (l + A /2) 1 - A (l. 2v, Z = - . 
1/2 V- - A1/2 V. 

2 2 4A124A!2v 

Thus w and z are linearly independent. 
If we let, for w,u $ 0, 

W= (Aj )1/2y , j I ,2,. . .,p; 

(4.) ((A /2x ), j = i,2,...,p, if w2l1p32 +4(w- 1) $ 0, 

w1j/2j =12,...,p if w2Ilj 12+ 

Wj = Vj, j = 2p + 1, 2p + 2, ... ., n, 
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then we can easily prove that wj, j = 1,2,..., n, are linearly independent and 
hence form a basis of the n-dimensional complex vector space Cn. Therefore, the 
matrix whose columns are the wj reduces -F,, to Jordan canonical form. Thus we 
have proved: 

THEOREM 1. If the matrix A has the form of (3.1) and ip = ip(B) is an 
eigenvalue of multiplicity q of B of (3.3), then the Jordan canonical form of YWb 

has n-2q (1 x 1) sub-Jordan blocks and q (2 x 2) sub-Jordan blocks which correspond 
to the eigenvalue Wb - 1. 

Notice that if q = 1, then the Jordan canonical form of 2,b has one nondiagonal 
element. 

From Theorem 3.1 of [5, p. 65] and Theorem 3-7.1 of [7, p. 85] we have 

(4.15) II M|I JGZb) m 

Here, IhAIl is the spectral norm of the matrix A and J(-.b) is the Jordan condition 
number of the matrix 4b, defined by Young [7, p. 85] and given by 

(4.16) J(-Wb) = inf /c(V), 
VESi 

where ic(V) is the spectral condition number of the matrix V and SI the set of all 
matrices such that 

(4.17) V 'WbV = J. 

Here, J is the Jordan canonical form of the matrix YWb. 

5. Determination of hlywlhlD112. Let 

(5.1) ..J =D YwD- I 

then from (4.2) and (3.6) we have 

(5.2) X~ = (w(l - w)I 2 wDl'FD2 - W)I2) w)~2GD11 w2D FDl2 

If we let 

F = D1/2FD_-1/2 = 1/2HD-1/2 

(5.3) - 

2 

- G=D 12/2 GD_ 1/2 =D2- 1/2 KD - 1/2 

then 

(5.4) OT = _F 

and 

(w (1-w)G w?F + (1 - w)I2) 

Hence, .. is the SOR iterative matrix corresponding to the matrix 

(5w6) A = Ds/2iAD-te/2 J iI -Fm 

with the associated Jacobi iterative matrix 
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Therefore, p(B) = p(B), and wb is the same for A as for A. Moreover, if we let 
Y [A] stand for the SOR iterative matrix associated with the matrix A and D[A] 
for the diagonal block of the matrix A, then we have 

(5.8) IIl2wm[A]IID[AIl/2 = II2 m[A]II = LYm[A]II = II [A]IID[A]1/2 

Thus, it is sufficient to assume A of (3.1) with D1 = I, and D2 = I2. Otherwise, 
we consider A (5.6). Notice that when D1 = I, and D2 = I2 then F = H, G = K, 
and FT = CG. 

Since 

(5.9) IIWfIID1/2 = II,WIID1/2 = W 

according to the expression (4.2) for Y. we first study the eigenvalues of products 
of matrices of the form 

(5.10) 
I all(FG) al2(FG)F 

(5.10) a2l(GF)G a22(GF),J' 

where all and ai2 are polynomials in FG and a2l and a22 polynomials in GF. By 
an analogy with Theorem 7-2.1 of Young [7, p. 239] we have: 

THEOREM 2. If B is a matrix of the form (3.3), then 
(a) The matrix 

(5.11) Q a,i(FG) a12(FG)F\ 
a21(GF)G a22(GF) 

is nonsingular if 

(5.12) rt(B2) = aii(B2)a22 (B2) -a2l (B2)al2(B2)B2 

in nonsingular. Moreover, r(B2) is nonsingular if and only if for each eigenvalue 
,u of B the matrix 

(5.13) R(p) = a (p2) a22(/12) J 

is nonsingular. 
(b) Let 

(5-14) Cm = all (FC) a,12(FC)F V 

(54 a (k)(GF)G ak2(CF)) 

where for each k, tJk = +1. It is assumed that for any k the matrix 

(5.15) r(k) (B2) = a( k) (B2)a k2) (B2) -ak) (B2)a(k)(B2)B2 

is nonsingular for tJk = -1. For each eigenvalue ,t of B, let 

(5.16) Mml1 =1 12k(/z) a(P) ) ) 

If ,u is a nonzero eigenvalue of B and if A is an eigenvatue of Mm(M), then A is 
an eigenvalue of Gm. If ,u = 0 is an eigenvalue of B, then at least one of the 
eigenvalues of Mm(0) is an eigenvalue of Gm. 
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(c) If A is an eigenvalue of Gm, then there exists an eigenvalue ,u of B such that 
A is an eigenvalue of Mm (/1). 

Notice that although the matrix B considered here and the matrix B considered 
in Theorem 7-2.1 of Young [7, p. 239] are not the same type of matrices-the 
former is similar to a skew-symmetric matrix and the latter a symmetric matrix- 
the statement of these two theorems are the same and the proofs are also the same. 
Hence the proof of Theorem 2 is omitted. 

From (4.2) we have 

2*_eT_ {(1- W)IJ 0 8 I, -wFA 
(5.17) -wG (1-W)I2 0 I2(J 

( ) _ { ~~(1-W)IJ -w(1 -w)F 
- ((1-wG wW2GF + (1-W)I2). 

Thus, from (4.2) and (5.7), .w and Y.* have the required form for the applicability 
of Theorem 2. From Theorem 2 we know that the eigenvalues of * are the 
same as the eigenvalues of M(w, ,2)M* (w, s), where 

(5.18) 
( ) (p 1) 0 1-w 

= (1 - W)W 2 w2P2+1_W 

If we notice p = -,u (here ,u is purely imaginary), and if we let 

(5.19) (mul m22) 

then 
M = (1=-W)2 - 2A2 

m12 = W3/3 + WP(j-W)-(1-W)2 _ WI = ,uw2[1 - W + Wu2], 

M2 = - ml2 = -1aw2[1 - w + w,02], 

M22 = W 4A, + (1 _ W)2 + 2W2Pb2(j-W _ W 2IL2(1 _ W)2 

= w4,u 4 + (1-w)2 + W2%2(j-w)(1 + w). 

Since 

mll + m22 = 2(1-w)2 +w4,u4-4-4IL2, 

M12M21 = - 82w4[(1 _ W)2 + 2wM2(1 - w) + w2A4], 

(5.20) m22m11 =-W6it6-2W4p4 *w * (1-w)-w2 IL2(1_W)2 W2 + (1 )4 

= -w4 s2[w214 + 2wp2(1 -w) + (1-w)2] + (1-w)4 

= m2lml2 + (1-)4 

we have 

(5.21) m22m11 - = (1M-Mw)4. 

Thus, if we let 

(5.22) det(AI - M(w, ,u)M* (w, i)) = A2 - T(,u2)A + c = 0, 
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then 

(5.23) T(IL2) = 2(1 _ w)2 + W4s4 _ w4u2, C= (1-w)4. 

Notice that /2 < 0, so that T(Q2) is an increasing function of 1p. Therefore, by 
Lemma 6-2.9 of Young [7, p. 186], it follows that for a given w, the largest value of 
the root radius of (5.22) is assumed for ,u = ip(B) (or ,u = -ip(B)). From (5.22) 
and (5.23) we know that if A satisfies (5.22), then t = A1/2 satisfies 

(5.24) t2 - (w 1)2 = w21,pI(l + IP12)1/2t 

Note j,uj = p(B), and if we let f-p(B) and 

(5.25) d = p(1 + p2)1/2, 

then by Lemma 6-2.1 of Young [7, p. 171] the root radius of (5.24) is less than 
unity if and only if we have 

Iw-11 < 1 and w2d< 1-(w-1)2=w(2-w), 

or, equivalently, 

(5.26) 0 < w < min {2, d } 1+d ( 0). 

Thus we have proved 

THEOREM 3. If A has the form (3.1) with Di and D2 symmetric and positive 
definite and H and K satisfying (3.2), then IIlWIID1/2 < 1 if and only if w satisfies 
(5.26). Moreover, we have 

w2d+ 4 d2+4(1-W)2 
(5.27) I1yWIID1/2 = 2 

We now determine the minimum value Of lw IID1/2. If we let 

f(w) =w2d+ w4d2+4(1-w)2, 

then the derivative of f(w) is given by 

f'(w) = 2w d + [4w3 d2 + 8(w-1)]/2 w4d2+4(1-w)2. 

Assume f'(w) = 0; then 

(5.28) -w d w4d2+ 4(1 w)2 =W3 d2+ 2(w-1). 

Notice that (5.28) means 

(5.29) g(w) =W3d2 +2(w-1) <0. 

By Descartes' rule we know that g(w) has only one positive root wu. Thus, if 
w E (0, wa,), then (5.29) holds. Moreover, if w > w,u, we have 

(5.30) f'(w) > 0. 

If 0 < w < w, and from (5.28), we have 

(5.31) w 2 d2 + w - 1 = O. 

Evidently, the positive root w+ of (5.31) is given by 

(5.32) (A= [-1 + V/Y4T]/2d2 - 
2 

1 -+ 4d2 
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One can examine 

(5.33) w+ < min {2, d} 
2 
2 

Thus, we obtain 
< 0 if 0 < w < w+, 

f'(w) =0 if w=w+, 

1 >0 ifw>w+, 
because we have 

(5.34) w+ < Wu. 

In fact, if w+ > wu, then from (5.31) and (5.32) we have w2 d2 + w-1 < 0 for 
0 < w < wu. Thus we can prove f'(w) < 0 for 0 < w < wu. Owing to the continuity 
property of f'(w), we have f'(wu) < 0, which contradicts (5.30). Hence (5.34) 
holds. We have now proved the following theorem. 

THEOREM 4. Under the assumptions of Theorem 3 we have 

11yW+ 11 D1/2 < IIyW| |D 1/2 for w 54 w+ . 
Here, w+ is given by (5.32). 

It is important to note that from (1.9), (5.25), and (5.26) we have 

Wb < if =p(B) < 1, 

Wb?> 
2 

if,>t1. 

Thus, when ft < 1, we also have II)b IID1/2 <1 
In fact we have proved 

THEOREM 5. Under the assumptions of Theorem 3 we have 

IIWb IID1/2 < 1 if and only if ft = p(B) < 1. 

But when ft > 1, we have llwblD 1/2 > 1. However, in the next section, we 
will prove that for any ft > 0, llwm,ID1/2 < 1 if m is large enough, and that 
liMitM - oolyZb 11 = ?' 

6. Determination of IYwIbI1D1/2. In this section we continue with the theory 
of Young [7, Chapter 7] to investigate IIJwbml DII2i. From the discussion of the last 
section it is sufficient to consider A (3.1) with D1 = I1 and D2 = I2. Since the 
eigenvalues of M M are the same as those of Mm(Wb, M) [Mm(Wb, ,u)]*, where 
M(wb, t) is given by (5.18), we first develop an expression for Mm(w, i). If we 
define the polynomials So (/), Si (),... by the recursion formula 

(6.1) SkQ() = WMSk-1(M) + (1- W)Sk-2(M), k > 2, 
So) = 1, Si (,u) = w, 

then by a result of Young [7, p. 248] we have 

(1-W)S2m-2 S2m-1 (6.2) M(w, Pi)m ((= )2m2Sm 
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Notice that ,u is purely imaginary. By (6.1) one can see that S2k(,q) are real and 
S2k+1 purely imaginary. Also from the result of Young [7, p. 249, Eq. (4.7)] we 
have 

k ak+1 ak+1 a1 -2 if a,#a2, 
(6.3) Sk(k) a a, 

2 i 
- a2 

j= 1 (k + 1)a k if a1 =a2. 

Here, a, and a2 are the solution of the quadratic equation 

(6.4) a 2 -wMa + w-1 = 0. 

Now we prove that if w = Wb and r = (1- Wb) then 

(6.5) Sk(ip) = Sk(ip(B)) = (i)k (r1 /2)k * (k + 1), 

(6.6) max ISk(/)I = ISk(if)I = (k + l)(rl/2)k. 

Let ,u = i6; then the roots a1 and a2 of (6.4) are given by 

al,2 = [ifWb ? -I2W b - 1)]/2 = i[/IWb + I32wb + 4(Wb - 1)]/2. 

By (1.9) we have 
Wb + 4(Wb 1) = 0. 

Thus, if ,B = ,u, then a1 = a2 = ijiWb/2 = ir"/2. Hence (6.5) follows from (6.3). If 

1/31< ?u, then /32w2 + 4(Wb - 1) < 0. Therefore, la, I = 1a21 = (1 - Wb)1/2 = r-/2. 

Again by (6.3), (6.6) follows. 
From (6.2) we have 

Mm (wU, A) [Mm (w,, IA)]* 

(I 
- 

(1-)S2m-2 S2m-1 (1-W)S2m-2 -(1-(W)S2m-1 

(6.7) ( -)S2m-1 S2m (1 -S2m-1 S2m J 

=I((1- (1 - w)2SS2m-2 1(-2m-1 ( ml S2m-2) 

( (-w)2S2m S2m-2- S2mS2m-1 -(1 _- W)2S22m_l + S22M 

Evidently, the characteristic equation for Mm (Wb, ,U) [Mm (wb, ,U)]* is 

(6.8) A2 - Tm(Wb, /I)A + A = 0, 

where 

(6.9) Tm(Wb,A /) = (1 - Wb) S22m-2 - S2m-(1 -Wb) Sm + S2m 

and 

(6.10) A = det{Mm(wA)b, 1)[M(Wb, ,)] } = r4m = (1 - Wb)4m 

by (5.18). Since [Tm(Wb, u)]2 - 4A > 0, because the eigenvalues of the Hermitian 
matrix Mm (wb, p.) [Mm (wb, ,u)]* are real, it follows that for fixed A the modulus of 
the root of (6.8) is maximized when ITm(Wb, 1), considered as a function of ,u, is 
maximized. But, by (6.5) and (6.6), ITm(Wb, p)1 is maximized when ,u = ip, and we 
have 

ITm(Wb, ift)I = r2 (2m - 1)2r2m-2 + r2m-1 . (2m)2 
(6.11) + r2 (2m)2r2m-1 + (2m + 1)2r2m 

= 2r2m[1 + 2m2(if4 + -1/2)2 
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Thus, from (6.8), (6.10), and (6.11) we have 

(6.12) (A- = 4m2(r-"/2 + rl/2)2r2m A 

and 

(6.13) A-r2m = 2m(r-/2 + r /2)rmAi/2 

Hence we have proved the following 

THEOREM 6. Under the assumptions of Theorem 3, we have 

(6.14) IIy7whIID1/2 = rm{m(r-1/2 + r1/2) + [m2(r-1/2 + r1/2)2 + 1]1/2} 

where 

(6.15) r = 1- wb, Wb= 1+22 f =p(B). 

From (6.14) we know that for any t = p(B) > 0 

limit II1wb IID1/2 = limit F (m) = 0. 

But, for values of r close to unity, the function F1(m) increases initially before 
eventually decreasing. For r close to unity we have 

llywb IID112 2mrm (r- 1/2 + r1/2) 

(6.16) = 2mrm(r-lrl/2 + r-1r 

4mrm. 

On the other hand, we have 

Iywbm, || = |IMm (wb,i iI) | mJ(M(wb, ip))rm 
1 

by Theorem 3-7.1 [7, p. 85]. Here, J(M(wb, if)) is the Jordan condition number 
Of M(wb, if). But by [7, Theorem 3-8.1, p. 89] we have 

J(M(wb, i/)) = Wb/I + (1 - Wb)wb/I = Wb/(l + 1 - Wb) = 2r"/2(1 + r) 4. 

Hence, 

(6.17) jI2m II|- 4mrm1. 

Therefore, I1?mb II behaves like I 2wb IID1/2. 

Young [7, p. 255, Eq. (4.50)] has given mo, the estimated number of iterations 
needed to reduce the D1/2-norm of the error vector to a specified fraction E of the 

D1/2-norm of the initial error vector as follows: 

MO = log((2v/e) * log(2v/e))/log(1/r), 

(6.18) r1/2 + r-1/2 

log(1/r) 

Final Remarks. (a) Since l2lWb IID1/2 > 1 if f 1, one should expect that it may 
be better to use w = w+ rather than w = wb in the initial steps. In this direction, 
an investigation is under way. 

(b) By noting Theorem 6 and Theorem 7-4.1 of Young [7] one can find out 
that I1.|wb ID1/2 for the nonsymmetric case and lYw,,IID1/2 for the symmetric and 

pi 
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positive definite case have the same expression in m and r. The only diference is 
that for the former, 

(6.19) r-1-- p2(B) 
(6-19) r = 1Wb = 

(1 + V1+ p2 (~B))' 

and for the latter, 

p2(B) (6.20) r = Wb -1 = + p()) 

Especially for m = 1, we have 

(6.21) bll bIID1/2 = 11yII1D1/2 = r{(r-1/2 + r/2) + 1 + (r-1/2 + r1/2)2jl/2} 
= r1/2{(1 + r) + [r + (1 + r)2]/2} - F(r). 

It is clear that F(r) is an increasing function of r. In fact one can prove 

LEMMA. Let F(r) be given by (6.21). Then 

F(r) < 1 '? 0 < r < rO = 1/(1 + X/2)2* 

By means of the above lemma we can give another proof of Theorem 5. In 
fact, it follows from (6.19), (6.21) and the above lemma that ILL, lID1/2 < 1 if and 

only if p2(B)/(1 + X/1 + p2(B)) < 1/(1 + X/2)2, or equivalently, p(B) < 1. Thus, 
Theorem 5 follows. However, we can give a similar result for the symmetric case. 
By noting (6.20), (6.21) and the above lemma, we have llywID1/2 < 1 if and only 

if p2 (B)/(1 + /1 - p2 (B)) < 1/(1 + V2/)2, or equivalently, p(B) < 1/X/. Thus we 
have proved 

COROLLARY. If A has the form (1.7) and is symmetric positive definite, then 
the D1/2 -norm of the corresponding optimum SOR iterative matrix Y., is less than 

unity if and only if p(B) < 1/X. 

To our knowledge, the result of the above corollary is new. However, it should 
be noted that the result can be deduced from Theorem 7-3.1 of Young [7]. 

Acknowledgments. The authors are indebted to the referees for their valuable 
suggestions. The work of Changjun Li was supported by the Chinese Academy of 
Sciences, The People's Republic of China. 

Department of Computer Studies 
Loughborough University of Technology 
Loughborough, Leicestershire, United Kingdom 

Shenyang Institute of Computing Technology 
Academia Sinica 
Shenyang, China 

1. L. W. EHRLICH, "Coupled harmonic equations, SOR and Chebyshev acceleration," Math. 
Comp., v. 26, 1972, pp. 335-343. 

2. E. D. NERING, Linear Algebra and Matrix Theory, 2nd ed., Wiley, New York, 1970. 
3. H. SPATH, "The numerical calculation of high degree Lidstone splines with equidistant knots 

by block and overrelaxation," Computing, v. 7, 1971, pp. 65-74. 



218 D. J. EVANS AND C. LI 

4. H. SPATH, Spline Algorithms for Curves and Surfaces, Utilitas Math. Publishing Inc., Win- 
nipeg, 1974. 

5. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. 
6. D. M. YOUNG, "Iterative methods for solving partial differential equations of elliptic type," 

Trans. Amer. Math. Soc., v. 76, 1954, pp. 92-111. 
7. D. M. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New York and 

London, 1971. 


